Remediating Students’ Misconceptions on Fractions through Conceptual Change Theory and Scaffolding

DOI:

https://doi.org/10.58421/misro.v4i2.530

Authors

Keywords:

Conceptual Understanding, Five-Tier Diagnostic Test, Misconceptions, Scaffolding Provision, Theory of Conceptual Change

Abstract

Students’ misconceptions about fraction concepts remain prevalent and significantly impact their mathematical understanding. The purpose of this study was to provide remediation to students who were identified as having misconceptions about fractions based on the results of a diagnostic pre-test using a five-tier instrument. Remediation of students' misconceptions was carried out through learning using conceptual change theory and scaffolding. To determine the impact of the intervention, a post-test diagnostic was conducted using the five-tier instrument. This study employed a mixed-methods approach through a convergent parallel design. The quantitative subjects consisted of 26 students, while the qualitative subjects comprised three students selected through purposive sampling. Qualitative data were collected through observation, interviews, and documentation. The results of this study indicate that before remediation, the average scientific conception (correct answers) was low at 17.6%, and after remediation, it increased to 86.6%, representing an average increase of 69%. The findings indicate that integrating conceptual change theory with scaffolding is a promising strategy for addressing entrenched misconceptions in mathematics education.

Downloads

Download data is not yet available.

References

M. Nurani, R. Riyadi, and S. Subanti, “Profil Pemahaman Konsep Matematika Di Tinjau Dari Self Efficacy,” AKSIOMA: Jurnal Program Studi Pendidikan Matematika, vol. 10, no. 1, p. 284, Apr. 2021, doi: 10.24127/ajpm.v10i1.3388.

N. Azizah, B. Budiyono, and S. Siswanto, “Kemampuan Awal: Bagaimana Pemahaman Konsep Siswa Pada materi Teorema Pythagoras?,” AKSIOMA: Jurnal Program Studi Pendidikan Matematika, vol. 10, no. 2, p. 1151, Jul. 2021, doi: 10.24127/ajpm.v10i2.3662.

A. K. D. Maison and R. Sari Widowati, “The Quality of Four-Tier Diagnostic Test Misconception Instrument for Parabolic Motion,” Jurnal pendidikan dan pengajaran, vol. 54, pp. 359–369, 2021, doi: 10.23887/jpp.v54i2.

E. Lusy Rusdianti, “Misconception And Scaffolding Students In Solving Algebraic Operation Problems In Terms Of Cognitive Style,” Matematika dan Pendidikan Matematika, Jurnal, vol. 04, no. 01, pp. 62–79, 2021.

E. Manora, A. Yani, S. S. Program, S. Pendidikan, M. Fkip, and U. Pontianak, “Remediasi Miskonsepsi Siswa Dikaji Dari Gaya Kognitif Dalam Materi Bilangan Bulat Di SMP,” Jurnal Pendidikan Dan Pembelajaran Khaluristiwa, 2020.

Z. Juita, P. D. Sundari, S. Y. Sari, and F. R. Rahim, “Identification of Physics Misconceptions Using Five-tier Diagnostic Test: Newton’s Law of Gravitation Context,” Jurnal Penelitian Pendidikan IPA, vol. 9, no. 8, pp. 5954–5963, Aug. 2023, doi: 10.29303/jppipa.v9i8.3147.

G. J. Posner, K. A. Strike, P. W. Hewson, and W. A. Gertzog, “Accommodation of a Scientific Conception: Toward a Theory of Conceptual Change*,” pp. 211–227, 1982.

Dwi Pebriyanti, Hairunnisyah Sahidu, and Sutrio, “Efektifitas Model Pembelajaran Perubahan Konseptual Untuk Mengatasi Miskonsepsi Fisika Pada Siswa Kelas X SMAN 1 Praya Barat tahun Pelajaran 2012/2013,” Jurnal Pendidikan Fisika dan Teknologi, vol. 1, no. 1, pp. 92–96, 2015.

I. Kusmaryono, A. M. Gufron, and A. Rusdiantoro, “Efektivitas Strategi Scaffolding dalam Pembelajaran Melawan Penurunan Tingkat Kecemasan Matematika Machine Translated by Google,” Jurnal Matematika dan Pendidikan Matematika, vol. 4, pp. 13–22, 2020.

S. M. Purwasih and E. Rahmadhani, “Penerapan Scaffolding Sebagai Solusi Meminimalisir Kesalahan Siswa Dalam Menyelesaikan Masalah SPLDV,” Fibonacci: Jurnal Pendidikan Matematika dan Matematika, vol. 7, no. 2, p. 91, Jan. 2022, doi: 10.24853/fbc.7.2.91-98.

John Creswell, Educational Research Plannin, Conducting And Evaluating Quantitative and Qualitative Rsearch. 2015.

Herliana, Maison, and Syaiful, “Development And Implementation Of A Five-Tier Diagnostic Test To Identify Student Misconceptions On Fractions: A Significant Step Towards Improving Mathematics Education,” Jurnal Ilmiah Ilmu Terapan Universitas Jambi, vol. 8, no. 2, pp. 563–576, Dec. 2024, doi: 10.22437/jiituj.v8i2.34159.

J. Anghileri, “Scaffolding practices that enhance mathematics learning,” Journal of Mathematics Teacher Education, vol. 9, no. 1, pp. 33–52, Feb. 2006, doi: 10.1007/s10857-006-9005-9.

N. M. Mbajiorgu, N. G. Ezechi, and E. C. Idoko, “Addressing nonscientific presuppositions in genetics using a conceptual change strategy,” Sci Educ, vol. 91, no. 3, pp. 419–438, May 2007, doi: 10.1002/sce.20202.

Muh. Makhrus, M. Nur, and W. Widodo, “Model Perubahan Konseptual Dengan Pendekatan Konflik Kognitif (MPK-PKK),” Jurnal Pijar Mipa, vol. 9, no. 1, Mar. 2014, doi: 10.29303/jpm.v9i1.39.

N. P. E. Adriana Sari, I. W. Santyasa, and I. G. A. Gunadi, “The Effect of Conceptual Change Models on Students’ Conceptual Understanding in Learning Physics,” Jurnal Pendidikan Fisika Indonesia, vol. 17, no. 2, pp. 94–105, Nov. 2021, doi: 10.15294/jpfi.v17i2.27585.

M. Nur Hudha and L. Yuliati, “Perubahan Konseptual Fisika Dengan Aunthentic Problem Melalui Integrative Learning Pada Topik Gerak Lurus Pada SMA Suryabuana Malang,” Jurnal Inspirasi Pendidikan, vol. 6, no. 1, pp. 733–743, 2016.

G. Özdemir and D. B. Clark, “An Overview of Conceptual Change Theories,” Eurasia Journal of Mathematics, vol. 3, no. 4, pp. 351–361, 2007.

S. Caravita and O. Halldi$n?, “Re-Framing The Problem of Conceptual Change,” 1994.

S. Syuhendri, “A Learning Process Based On Conceptual Change Approach To Foster Conceptual Change In Newtonlan Mechanlcs,” Journal of Baltic Science Education, vol. 16, no. 2, pp. 229–240, 2017.

S. Syuhendri, “Effect of conceptual change texts on physics education students’ conceptual understanding in kinematics,” in Journal of Physics: Conference Series, IOP Publishing Ltd, May 2021. doi: 10.1088/1742-6596/1876/1/012090.

C. Pacaci, U. Ustun, and O. F. Ozdemir, “Effectiveness of conceptual change strategies in science education: A meta-analysis,” J Res Sci Teach, vol. 61, no. 6, pp. 1263–1325, Aug. 2024, doi: 10.1002/tea.21887.

Ç. Şahin, H. Ipek, and S. Çepni, “Computer supported conceptual change text: Fluid pressure,” in Procedia - Social and Behavioral Sciences, 2010, pp. 922–927. doi: 10.1016/j.sbspro.2010.03.127.

J. Götzfried, L. Nemeth, V. Bleck, and F. Lipowsky, “Learning styles unmasked: Conceptual change among pre-service teachers using podcasts and texts,” Learn Instr, vol. 94, Dec. 2024, doi: 10.1016/j.learninstruc.2024.101991.

T. G. Amin, C. L. Smith, and M. Wiser, “Student Conceptions and Conceptual Change Three Overlapping Phases of Research,” 2014.

S. Ibrahimi, L. D’Andrea, D. Gastaldi, M. W. Rivolta, and P. Vena, “Machine Learning approaches for the design of biomechanically compatible bone tissue engineering scaffolds,” Comput Methods Appl Mech Eng, vol. 423, Apr. 2024, doi: 10.1016/j.cma.2024.116842.

T. Li et al., “Analytics of self-regulated learning strategies and scaffolding: Associations with learning performance,” Computers and Education: Artificial Intelligence, vol. 8, Jun. 2025, doi: 10.1016/j.caeai.2025.100410.

M. Nickl et al., “Effects of real-time adaptivity of scaffolding: Supporting pre-service mathematics teachers’ assessment skills in simulations,” Learn Instr, vol. 94, Dec. 2024, doi: 10.1016/j.learninstruc.2024.101994.

M. Menekse et al., “Enhancing student reflections with natural language processing based scaffolding: A quasi-experimental study in a large lecture course,” Computers and Education: Artificial Intelligence, vol. 8, Jun. 2025, doi: 10.1016/j.caeai.2025.100397.

W. Retnodari, W. Faddia Elbas, and D. S. Loviana, “Scaffolding Dalam Pembelajaran Matematika,” Jurnal Of Mathematics Education, vol. 1, pp. 19–27, Jun. 2020.

S. Wulandari and I. Hayati, “Peran Questioning Sebagai Scaffolding dalam Pembelajaran Matematika,” Jurnal Padegogik, vol. 5, no. 2, pp. 43–52, 2022, doi: 10.35974/jpd.v5i2.2898.

N. M. Murdiyani, “Scaffolding to Support Better Achievement in Mathematics,” PYTHAGORAS Jurnal Pendidikan Matematika, vol. 8, no. 1, pp. 84–91, Jun. 2013, doi: 10.21831/pg.v8i1.8496.

C. Borchers, H. Fleischer, S. Schanze, K. Scheiter, and V. Aleven, “High scaffolding of an unfamiliar strategy improves conceptual learning but reduces enjoyment compared to low scaffolding and strategy freedom,” Comput Educ, vol. 236, Oct. 2025, doi: 10.1016/j.compedu.2025.105364.

E. Ertugruloglu, T. Mearns, and W. Admiraal, “Scaffolding what, why and how? A critical thematic review study of descriptions, goals, and means of language scaffolding in Bilingual education contexts,” Aug. 01, 2023, Elsevier Ltd. doi: 10.1016/j.edurev.2023.100550.

Y. Ika and P. Pranyata, “Kajian Teori Kontruktivis Sosial dan Scaffolding Dalam Pembelajaran matematika,” Jurnal Ilmu Pendidikan , vol. 1, no. 2, pp. 280–292, 2023.

Downloads

Published

2025-06-30

How to Cite

[1]
Fikriyah, Maison, and N. Huda, “Remediating Students’ Misconceptions on Fractions through Conceptual Change Theory and Scaffolding”, J.Math.Instr.Soc.Res.Opin., vol. 4, no. 2, pp. 543–558, Jun. 2025.

Issue

Section

Articles