Analyzing the Thinking Trajectory of Students with Dyscalculia in Solving Spatial Mathematical Problems

DOI:

https://doi.org/10.58421/gehu.v4i2.445

Authors

  • Anisa Raihan Fadilla Universitas Jambi, Jambi https://orcid.org/0009-0009-0624-6646
  • Kamid Kamid Universitas Jambi, Jambi
  • Rohati Rohati Universitas Jambi, Jambi

Keywords:

Dyscalculia, spatial reasoning, thinking trajectory, mathematical difficulties, qualitative research

Abstract

This study employs a qualitative descriptive case study design to explore the thinking trajectories of two seventh-grade junior high school students who exhibit symptoms of dyscalculia when solving mathematical spatial problems. Dyscalculia is a specific learning difficulty that affects a student’s ability to understand and manipulate numerical and spatial information. The research aims to analyze how these students process mathematical problems, particularly focusing on the second phase of Simon's learning trajectory theory: the thinking trajectory. The study assessed five cognitive stages: connection, representation, communication, reasoning, and problem-solving. The research was conducted at SLB Prof. Dr. Sri Soedewi Masjchun in Jambi, Indonesia, from January to February 2025. Data collection techniques included written tests and in-depth interviews. Findings indicate that students with dyscalculia demonstrated confusion and limitations in all five cognitive processes assessed. The students often showed non-linear thinking patterns, with disruptions evident at the connection and representation stages due to limited conceptual understanding and low visual-spatial ability. For instance, one student relied heavily on external help to recall shapes and formulate strategies. At the same time, another tended to use trial-and-error approaches, struggled to provide logical explanations, and demonstrated confusion when translating verbal information into visual form. The implications suggest that additional support and inclusive instructional strategies, such as using concrete visual aids or 3D models, are essential. Teachers should adapt their methods to accommodate students with dyscalculia, helping them improve spatial reasoning and mathematical comprehension.

Downloads

Download data is not yet available.

References

Z. Zakiah and F. Khairi, “Pengaruh Kemampuan Kognitif Terhadap Prestasi Belajar Matematika Siswa Kelas V Sdn Gugus 01 Kecamatan Selaparang,” El Midad, vol. 11, no. 1, pp. 85–100, 2019, doi: 10.20414/elmidad.v11i1.1906.

OECD, PISA 2022 Results (Volume I): The State of Learning and Equity in Education. Paris: Organisation for Economic Co-operation and Development, 2023. [Online]. Available: https://www.oecd-ilibrary.org/education/pisa-2022-results-volume-i_53f23881-en

J. Baswara, A. Dan, Y. Pendidikan, and L. Biasa, “Identifikasi Anak Kesulitan Belajar Matematika (Diskalkulia) di Sekolah Dasar,” J. Pendidik. Khusus, pp. 1–10, 2019.

G. Giordano, M. Alesi, and A. Gentile, “Effectiveness of cognitive and mathematical programs on dyscalculia and mathematical difficulties,” in International Review of Research in Developmental Disabilities, vol. 65, R. M. Hodapp, D. J. Fidler, and S. Lanfranchi, Eds. Academic Press, 2023, pp. 217–264. doi: 10.1016/bs.irrdd.2023.08.004.

L. Kaufmann, M. von Aster, S. M. Göbel, J. Marksteiner, and E. Klein, “Developmental Dyscalculia in Adults,” Lernen und Lernstörungen, vol. 9, no. 2, pp. 126–137, Jun. 2020, doi: 10.1024/2235-0977/a000294.

Hermanto and A. Supena, “Analisis Pelaksanaan Pembelajaran Matematika pada Siswa Dyscalculia di Sekolah Dasar,” J. Basicedu, 2021.

M. A. Simon, “Reconstructing Mathematics Pedagogy from a Constructivist Perspective,” J. Res. Math. Educ., vol. 26, no. 2, pp. 114–145, 1995, doi: 10.2307/749205.

T. Scusa, “Five Processes of Mathematical Thinking,” Dep. Teaching, Learn. Teach. Educ. Master’s Arts Teaching, Summ. Proj., Jul. 2008.

S. Liu et al., “Phonological Processing, Visuospatial Skills, and Pattern Understanding in Chinese Developmental Dyscalculia,” J. Learn. Disabil., vol. 55, no. 6, pp. 499–512, Nov. 2022, doi: 10.1177/00222194211063650.

F. Agostini, P. Zoccolotti, and M. Casagrande, “Domain-General Cognitive Skills in Children with Mathematical Difficulties and Dyscalculia: A Systematic Review of the Literature,” Brain Sci., vol. 12, no. 2, p. 239, 2022, doi: 10.3390/brainsci12020239.

M. Seyyed Sharbat, H. A. Zarei, and S. D. Hoseininasab, “Comparative Study of Visual-Spatial Working Memory Perception in Normal Students and Students with special learning disabilities,” Sci. J. Rehabil. Med., vol. 10, no. 5, pp. 988–1001, Jun. 2021, doi: 10.32598/SJRM.10.5.15.

S. Sudirman and F. Alghadari, “Bagaimana Mengembangkan Kemampuan Spasial dalam Pembelajaran Matematika di Sekolah?: Suatu Tinjauan Literatur,” J. Instr. Math., vol. 1, no. 2, pp. 60–72, 2020, doi: 10.37640/jim.v1i2.370.

Sugiyono, Metode Penelitian Pendidikan Pendekatan Kuantitatif, Kualitatif, dan R&D. Bandung: Alfabeta, 2018.

A. F. Nasution, Metode Penelitian Kualitatif, 1st ed. Bandung: Harfa Creative, 2023.

L. W. Anderson and D. R. Krathwohl, A taxonomy for learning, teaching, and assessing. 2001.

Nugrahani Farida, “dalam Penelitian Pendidikan Bahasa,” Metod. Penelit. Kualitatif, vol. 1, no. 1, p. 305, 2014, [Online]. Available: http://e-journal.usd.ac.id/index.php/LLT%0Ahttp://jurnal.untan.ac.id/index.php/jpdpb/article/viewFile/11345/10753%0Ahttp://dx.doi.org/10.1016/j.sbspro.2015.04.758%0Awww.iosrjournals.org

J. W. Cresswell, Research Design Pendekatan Metode Kualitatif, Kuantitatif dan Campuran. 2019.

F. A. Patricia and K. F. Zamzam, “Diskalkulia (Kesulitan Matematika) Berdasarkan Gender Pada Siswa Sekolah Dasar Di Kota Malang,” AKSIOMA J. Progr. Stud. Pendidik. Mat., vol. 8, no. 2, p. 288, 2019, doi: 10.24127/ajpm.v8i2.2057.

L. Y. Arifiani, “Pendekatan Pemecahan Masalah (Problem Solving) pada Pembelajaran Matematika Untuk Anak Diskalkulia,” no. April, 2018.

N. M. Jalal, “Intervensi Pada Siswa Dengan Kesulitan Belajar Diskalkulia,” J-PiMat J. Pendidik. Mat., vol. 4, no. 1, pp. 466–474, 2022, doi: 10.31932/j-pimat.v4i1.1635.

NCTM, Principles and Standards for School Mathematics. 2000. [Online]. Available: https://www.nctm.org

M. Kusumawaty, D. Trapsilasiwi, R. P. Murtikusuma, and H. Hobri, “Proses Berpikir Siswa Diskalkulia dalam Menyelesaikan Soal Cerita Perbandingan Berdasarkan Langkah Polya,” Absis Math. Educ. J., vol. 3, no. 2, p. 57, 2021, doi: 10.32585/absis.v3i2.1390.

T. S. Kutaka, P. Chernyavskiy, J. Sarama, and D. H. Clements, “Ordinal models to analyze strategy sophistication: Evidence from a learning trajectory efficacy study,” J. Sch. Psychol., vol. 97, pp. 77–100, Apr. 2023, doi: 10.1016/j.jsp.2023.01.002.

C. R. Hotimah and D. L. Hakim, “Analisis Kemampuan Representasi Matematis Siswa ABK (Slow Learner) pada Materi Sistem Persamaan Linear Dua Variabel ( SPLDV ),” vol. 10, no. 1, pp. 152–160, 2024.

D. Van Garderen, “Spatial visualization, visual imagery, and mathematical problem solving of students with varying abilities,” J. Learn. Disabil., vol. 39, no. 6, pp. 496–506, 2006, doi: 10.1177/00222194060390060201.

Downloads

Published

2025-05-25

How to Cite

[1]
A. R. Fadilla, K. Kamid, and R. Rohati, “Analyzing the Thinking Trajectory of Students with Dyscalculia in Solving Spatial Mathematical Problems”, J.Gen.Educ.Humanit., vol. 4, no. 2, pp. 589–604, May 2025.

Issue

Section

Articles

Most read articles by the same author(s)