Monte Carlo Simulation for Rattan Revenue: Production, Costs, and Demand Analysis
DOI:
https://doi.org/10.58421/misro.v4i4.721Keywords:
Demand, Monte Carlo, Production, Rattan business, Raw material pricesAbstract
The rattan industry in Cirebon, Indonesia, is a significant part of the country's creative economy, but it faces several major challenges, including unstable production, fluctuating prices for raw materials, and uncertain demand, which make it difficult to predict income. The goal of this research is to create a quantitative model that can accurately forecast business income and help entrepreneurs make better financial decisions. The study employs the Monte Carlo simulation method to examine the impact of production levels, raw material costs, and demand on the revenue of rattan businesses. The simulation was run 10,000 times using probability distributions based on historical data. The results indicate that market demand and selling prices have the most significant positive impact on profits, while raw material costs have the most substantial negative effect on profits. The model illustrates the uncertainty of business conditions, with profit varying between IDR 19.5 billion and IDR 76.1 billion, averaging IDR 50.2 billion. The findings underscore the need to strike a balance between meeting growing demand and managing costs to achieve long-term profitability. This Monte Carlo-based model can be a valuable tool for rattan business owners and policymakers to support informed planning and mitigate risks.
Downloads
References
V. A. Islamy, “Pasang Surut Sentra Industri Kerajinan Rotan di Desa Tegalwangi Kecamatan Weru Kabupaten Cirebon dan Pengaruhnya Terhadap Kehidupan Sosial Ekonomi Masyarakat di Sekitarnya Tahun 1973-2017,” UNDIP, 2019.
V. A. Islamy and D. Yuliati, “The Ups and Downs of Rattan Handicraft Industrial Centers in Tegalwangi Village 1973-2017,” Paramita: Historical Studies Journal, vol. 31, no. 1, pp. 56–63, Mar. 2021, doi: 10.15294/paramita.v31i1.23327.
B. Przysucha, P. Bednarczuk, W. Martyniuk, E. Golec, M. Jasienski, and D. Pliszczuk, “Monte Carlo Simulation as a Demand Forecasting Tool,” EUROPEAN RESEARCH STUDIES JOURNAL, vol. XXVII, no. Special Issue A, pp. 103–113, May 2024, doi: 10.35808/ersj/3391.
Dyah Lintang Trenggonowati, M. Ulfah, A. Ridwan, and R. Arthafia, “Proposed Improvement on Supply Chain System to Minimize The Bullwhip Effect Phenomenon with Monte Carlo Simulation Approach,” Journal of Innovation and Technology, vol. 2, no. 2, pp. 40–45, Oct. 2021, doi: 10.31629/jit.v2i2.3854.
Y. D. R. Montororing and M. Widyantoro, “Model of Inventory Planning Using Monte Carlo Simulation in Retail Supermarket with Consider To Competitors and Stimulus Strategies,” Journal of Applied Engineering and Technological Science (JAETS), vol. 4, no. 1, pp. 342–350, Nov. 2022, doi: 10.37385/jaets.v4i1.1093.
C. W. Oktavia and A. Sugioko, “Analisis Peramalan Dengan Simulasi Monte Carlo dan Implementasi Pengendalian Persediaan Gula Berdasarkan EOQ,” Jurnal METRIS, vol. 23, no. 01, pp. 62–67, Aug. 2022, doi: 10.25170/metris.v23i01.3526.
R. Pindyck and D. Rubinfeld, Microeconomis, 9th ed. Essex: Pearson Education Limited, 2018.
A. M. Law, Simulation Modeling and Analysis. New York: McGraw Hill, 2014.
H. A. Hakim, A. Mawadati, and C. I. Parwati, “Pengendalian Persediaan Bahan Baku Pembuatan Kaos Menggunakan Pendekatan Simulasi Monte Carlo Dan Min-Max Pada Konveksi Jaguar Screen Printing,” Journal of Engineering Environtmental Energy and Science, vol. 3, no. 2, pp. 67–72, Jun. 2024, doi: 10.31599/s662th18.
B. E. Cahyono, A. T. Nugroho, and I. W. Maulinida, “Klasifikasi Jenis Biji Kopi dengan Menggunakan Metode Gray Level Co-occurrence Matrix (GLCM),” TEKNOTAN, vol. 16, no. 3, p. 191, Mar. 2023, doi: 10.24198/jt.vol16n3.9.
OECD, Global value chains and UMKM in the creative industries. Paris: OECD Publishing, 2020.
M. Erwanto, K. Kosim, N. B. Riyanto, and S. B. Jogo, “Decision Tree Methodology (C4.5) for Predicting Students’ Reading Interest in the Library SMK Negeri 1 Kota Cirebon,” Journal of Mathematics Instruction, Social Research and Opinion, vol. 4, no. 1, pp. 195–204, Mar. 2025, doi: 10.58421/misro.v4i1.359.
M. Elghamry, “The Role of Raw Material Price Fluctuations on Organizations’ Financial Performance,” Oct. 2023.
M. Erwanto and M. R. Aziat, “Metode K-Nearest Neighbors Untuk Prediksi Penjualan Suku Cadang (Sparepart) Motor Honda,” INFOKOM, vol. 17, no. 2, pp. 8–18, 2024.
A. Kamel, M. Elwageeh, S. Bonduà, and M. Elkarmoty, “Evaluation of mining projects subjected to economic uncertainties using the Monte Carlo simulation and the binomial tree method: Case study in a phosphate mine in Egypt,” Resources Policy, vol. 80, p. 103266, Jan. 2023, doi: 10.1016/j.resourpol.2022.103266.
K. R. Penggalih and N. Wahyuhastuti, “Analisis Faktor-Faktor Yang Mempengaruhi Produksi Industri Kerajinan Rotan Di Desa Teluk Wetan Kecamatan Welahan Kabupaten Jepara,” Jurnal Spirit Edukasia, vol. 1, no. 1, pp. 54–66, 2021.
Y. Hendra, A. E. Syaputra, and A. P. Juledi, “Simulasi dalam Pengoptimalan Peningkatan Penjualan Kue Kareh,” |Journal Computer Science and Information Technology, vol. 7, no. 1, pp. 107–118, 2023.
D. Yuliana and P. Purjumatin, “Simulasi Monte Carlo dalam Memprediksi Tingkat Lonjakan Penumpang di Bandara Internasional Minangkabau,” JOURNAL OF SCIENCE AND SOCIAL RESEARCH, vol. 8, no. 3, p. 4135, Aug. 2025, doi: 10.54314/jssr.v8i3.4151.
Y. Su et al., “Retrospect driving forces and forecasting reduction potentials of energy-related industrial carbon emissions from China’s manufacturing at city level,” Environmental Research Letters, vol. 15, no. 7, p. 074020, Jul. 2020, doi: 10.1088/1748-9326/ab858b.
A. P. Nurhalizah and A. Ariesta, “Monte Carlo Simulation for Seasonal Stock Prediction of Seasoning at AH FOOD,” Jurnal Algoritma, vol. 22, no. 1, pp. 149–160, May 2025, doi: 10.33364/algoritma/v.22-1.2191.
D. P. Kroese, T. Brereton, T. Taimre, and Z. I. Botev, “Why the Monte Carlo method is so important today,” WIREs Computational Statistics, vol. 6, no. 6, pp. 386–392, Nov. 2014, doi: 10.1002/wics.1314.
P. Glasserman, Monte Carlo Methods in Financial Engineering, vol. 53. in Stochastic Modelling and Applied Probability, vol. 53. New York, NY: Springer New York, 2003. doi: 10.1007/978-0-387-21617-1.
A. J. McNeil, R. Frey, and P. Embrechts, Quantitative Risk Management. New Jersey: Princeton University Press, 2005.
Ainil Mardiah, Johni Eka Putra, Tio Devilishanti, Luthfi Nuraini, and Muh. Aksa, “Analisis Faktor-faktor yang Mempengaruhi Keberlanjutan Usaha Mikro Kecil dan Menengah (UMKM) yang Didirikan oleh Mahasiswa,” El-Mal: Jurnal Kajian Ekonomi & Bisnis Islam, vol. 6, no. 1, Jan. 2025, doi: 10.47467/elmal.v6i1.6427.
R. Prihatni and I. G. K. A. Ulupui, “The effect of raw material supply and production costs on the profit of manufacturing companies listed on the Indonesia Stock Exchange,” Accounting, vol. 11, no. 2, pp. 145–150, 2025, doi: 10.5267/j.ac.2025.2.001.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Mathematics Instruction, Social Research and Opinion

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
















