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 Alcoholism is characterized by persistent and uncontrollable 

consumption of alcoholic beverages, which poses significant risks to 

physical, psychological, and emotional health, including conditions 

such as liver cirrhosis, epilepsy, cancer, hypertension, and diabetes. 

Furthermore, it contributes to substantial social and economic 

challenges, including road accidents, domestic abuse, 

unemployment, and elevated crime rates. In Kenya, 12.2% of the 

population engages in alcohol abuse, where 10.4% are afflicted by 

alcohol-use disorders, thereby constituting a pressing public health 

concern. This study introduces a deterministic mathematical model 

describing alcoholism, which integrates treatment and counselling 

components and is articulated through the Ordinary Differential 

Equations (ODEs) framework. The model evaluates the ramifications 

of treatment for alcoholism, with stability analysis executed through 

the Jacobian matrix methodology and sensitivity analysis employing 

normalized forward sensitivity techniques. The reproduction number 

R0 was ascertained utilizing the next-generation matrix approach, 

wherein R0 > 0 indicates ongoing alcohol misuse within the 

susceptible population. Global stability analysis conducted through 

the Quadratic- Lyapunov method indicates that the Alcohol-Free 

Equilibrium (AFE) and Alcoholic Equilibrium (AE) are globally 

asymptotically unstable. Numerical simulations were done to 

forecast the impact of critical parameters, with these simulations 

underscoring the necessity of enhancing recruitment into the 

treatment compartment and minimizing relapse rates to render 

alcoholism manageable. Effective intervention strategies encompass 

public awareness initiatives, reduction of stigma, provision of 

incentives for treatment engagement, enhancement of treatment 

services, and the utilization of technological advancements for 

ongoing support. This research bears significant implications for the 

legislators and the Ministry of Health in formulating policies that 

establish a robust foundation for future endeavours aimed at 

controlling alcohol addiction. 
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1. INTRODUCTION  

Mathematical modelling constitutes a methodological approach employed to 

replicate real-world scenarios by utilizing mathematical equations, facilitating the 

anticipation of future behaviours by creating a streamlined representation of an authentic 

system [1]. This approach allows researchers to better understand complex systems by 

breaking them down into simplified, analyzable components [2], [3], [4], [5]. A model is 

universally regarded as a depiction of reality intended for analytical examination. In 

particular, mathematical models serve as tools to encapsulate systems under scrutiny in 

mathematical constructs, providing insights into the underlying mechanisms and 

relationships. These interrelations are typically articulated through various forms of 

equations (dynamic) or through governing principles organized as computational 

algorithms [6].  

One application of mathematical modelling lies in addressing public health issues, 

including substance dependency. Alcoholism recognized as a treatable condition analogous 

to other forms of substance dependency, poses significant challenges worldwide. Estimates 

from the World Health Organization (WHO) indicate that around 237 million men and 46 

million women globally grapple with issues related to alcoholism and its associated 

challenges [7]. In the context of Kenya, 12.2% (3,293,495 individuals) engage in alcohol 

abuse, while 10.4% (2,807,569 individuals) are diagnosed with alcohol use disorders [8]. 

Factors influencing alcoholism encompass social interactions, psychological stress, mental 

health status, age, ethnicity, and gender. By employing mathematical models, researchers 

can explore these factors quantitatively, helping to design effective interventions and 

predict the impact of various strategies on reducing alcohol-related problems [9], [10]. 

 Addiction represents a chronic physiological alteration induced by alcohol misuse. 

This alteration complicates the cessation of drinking among alcoholics, with individuals 

attempting to abstain often experiencing withdrawal symptoms after the discontinuation of 

alcohol consumption [11]. Several models have been developed concerning alcoholism; 

they include A model by Bhunu [12] on alcoholism that subdivided the human population 

into susceptible (those who do not consume alcohol and have never consumed it), S(t), 

those who consume alcohol but have not become alcohol dependent D(t), alcohol 

consumers are those dependent on alcohol A(t) and those recovered with or without 

treatment R(t). The analysis of the reproduction number showed conditions under which 

supporting the encouragement of moderate drinkers to quit alcohol consumption leads to a 

decrease in alcoholism better than alcoholics only quitting. However, the model did not 

consider in detail the impact of treatment as a remedy for alcohol consumption. The 

population was given by : N(t)=S(t)+D(t)+A(t)+R(t) [12]. The model did not include the 

treatment class before the recovery class. Mayengo's [13] Present study divides alcohol 

consuming population into three time-dependent population proportions: Light drinkers, 

Medium drinkers, and Alcoholics. This study considers the nondrinking population in 

Susceptible and Recovered. It also proposes the establishment of compulsory isolation 

treatment facilities as an intervention strategy, in which alcohol addicts will be recruited 

for compulsory rehabilitation. The numerical simulation suggests that the implementation 
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of compulsory isolation treatment facilities is an effective intervention as it has direct 

effects on the targeted Alcoholic population, with immediate effects of decreasing the 

number of alcoholics. However, compulsory isolation creates stigmatization of alcoholics. 

Muthuri et al. [14] Developed with six human population-based compartments and 

one media compartment. The population-based compartments are: S -Susceptible who 

have never used alcohol in their life, Sa− individuals exposed to media campaigns and 

have never used alcohol, L - Light drinkers who drink two to three drinks one or two times 

a week, H - Heavy drinkers who are dependent on alcohol, T -individuals under treatment 

or in the rehabilitation centres and Q -individuals who have stopped drinking permanently. 

The media compartment M - is the density of media campaigns. The model concluded that 

an effective media campaign model should be one in which those exposed to mass media 

do not drink alcohol. Numerical simulation shows that a higher treatment rate reduces 

those in the alcohol-addicted class. However, most data were estimated, and media 

advertisement is very expensive. 

The relation between stress and alcohol treatment was studied in various studies 

that compare alcoholics receiving treatment to those who do not. Individuals categorized as 

entering treatment exhibited a heightened likelihood of recognizing their drinking 

challenges more promptly; they also presented with a greater incidence of alcohol 

dependence symptoms, encountered more stressors, and faced negative occurrences across 

diverse life domains, thereby increasing their probability of recovery from alcoholism [15]. 

Thus, it is imperative to integrate treatment considerations into the discourse on alcoholism 

to evaluate its influence on the dynamics of this addiction, which is crucial for the effective 

management of alcohol dependency. The treatment of alcoholics typically entails the 

admission of individuals into rehabilitation facilities where counselling sessions and 

various programs are conducted to facilitate the voluntary alleviation of alcohol addiction. 

Treatment is essential for the regulation of alcoholism. Consequently, this study seeks to 

evaluate the efficacy of treatment in mitigating alcohol dependency and to propose 

recommendations for the control of alcoholism based on therapeutic interventions. 

 

2. MODEL FORMULATION AND DEVELOPMENT 

The model entails the establishment of a mathematical framework wherein the 

effective population is represented as (N). The epidemiological groups consist of 

individuals categorized into potential drinkers S(t), moderate drinkers M(t), alcoholics A(t) 

undergoing treatment T(t), and those who have recovered R(t). These classes are 

represented by the equation N(t) = S(t) + M(t) + A(t) + T(t) + R(t), where N(t) includes 

all categories of effective population. The susceptible population S(t) experiences an 

increase attributable to births at the rate π, relapses of moderate drinkers to potential 

drinkers at the rate of λ2, and contributions from recovered individuals at the rate ρ. This 

compartment experiences a decrement at the rate λ1 alongside natural mortality at the rate 

µ. The subsequent compartment pertains to the moderate drinkers class M(t), which is 

augmented at the rate λ1 by susceptible individuals commencing alcohol consumption for 

the first time, at the rate r2 by those relapsing from alcoholic status to moderate drinkers. 
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In contrast, this compartment diminishes due to moderate drinkers reverting to 

potential drinkers at the rate λ2. Those escalating their consumption from moderate to 

alcoholic drinkers at the rate r1, culminating in fatalities at a rate of μ, individuals are lost 

due to natural causes. The third compartment encompasses individuals classified as 

Alcoholics A(t), defined as consumers who exhibit alcohol dependence.  

The membership within this compartment is augmented by moderate drinkers who 

intensify their consumption patterns to alcoholic levels at the rate r1, by individuals 

relapsing from the recovered status to alcoholic consumption at the rate β, and from those 

reverting from the treatment compartment to alcoholic status at the rate ɑ2. This 

compartment is diminished by individuals who succumb to health complications arising 

from alcohol consumption at the rate µ1, those who die due to natural causes at the rate µ, 

and individuals transitioning to the treatment class at the rate ɑ1. The fourth classification 

pertains to Alcohol Consumers Undergoing Treatment and Counseling T(t). Individuals are 

incorporated into this class from the alcoholic category seeking treatment at the rate ɑ1. In 

contrast, this class experiences a decrement through transitions to the recovered class post-

treatment at the rate ɸ, through deaths either resulting from treatment complications or 

occurring during the treatment phase at the rate µ2, and those who perish due to natural 

causes at the rate µ, alongside relapses to alcoholic status from the treatment class at the 

rate ɑ2. The fifth compartment class encompasses those who have stopped drinking R(t), 

which includes recovered who have ceased consumption following rehabilitation or 

counselling in a recognized institution and are deemed to have stopped drinking R(t). 

Membership in this class is constituted by alcoholics who have undergone rehabilitation 

and been certified as having recovered from alcohol dependence at the rate ɸ. In contrast, 

the population in this class decreases due to natural mortality at the rate µ, fatalities 

occurring in the recovered class after cessation of alcohol consumption at the rate µ3, 

relapses to alcohol consumption following treatment and certification of recovery at the 

rate β, and finally, transitions to potential drinkers from the recovered class at the rate ρ. 

Figure 1 represents the flow chart diagram. 

 

 
Figure 1. Flow chart diagram 
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Equation (1) represents the model equations. 

{
 
 
 
 

 
 
 
 

dS
dt
= π + λ2M+ ρR − (μ + λ)S

dM
dt

= λS + r2A − (μ + λ2 + r1)M

𝑑𝐴

𝑑𝑡
= 𝑟1M+ βR + α2T − (α1 + 𝑟2 + μ1 + μ)A

𝑑𝑇
𝑑𝑡
= α1A − (α2 + ϕ+ μ2 + μ)T

𝑑𝑅
𝑑𝑡

= ϕT − (ρ + β + μ3 + μ)

 (1) 

 

The effective population is given by N(t) = S(t) + M(t) + A(t) + T(t) + R(t) in reference 

to 

N(t) = S(t) + D(t) + A(t) + R(t) [12]. 

The force of infection, λ is given by the equation below: 

λ =
𝐷𝐶(ϵ1𝑀+ ϵ2𝐴 + ϵ3𝑇)

𝑁
 

Where D represents non-drinkers' contact and C represents the probability rate of alcohol 

consumption.  

The parameter values in the model are given in the Table 1. 

 

Table 1. The parameter values in the model  
symbol parameter values Reference  

π Recruitment rate  0.0546 Vivas et al. [16] 

λ₂ Rate of relapse from moderate drinkers to potential 

drinkers 

0.7 Muthuri et al. [14] 

r₁ Rate of recruitment from moderate drinkers to alcoholics 0.055 NACADA (2012) 

r₂ Rate of relapse from Alcoholics to moderate drinkers 0.2 Manthey [17] 

α₁ Rate of recruitment from Alcoholics to Treatment class 0.131 Vivas et al. [16] 

α₂ Rate of relapse from Treatment class to Alcoholics 0.13 Miller et al. [18] 

β Rate of relapse from Recovered Drinkers to Alcoholics 0.001 Bhunu [12]  

μ₁ Natural death rate that is not caused by alcohol in each 

class 

0.02 Bhunu [12]  

μ₂ Death rate related to drinking alcohol in the Alcoholic 

class 

0.002 Sandow [19] 

μ₃ Death rate related to treatment 0.035 Bhunu [12]  

Ø Recruitment to recovered class 0.5 Assumed 

ρ Recruitment from recovered class to potential drinkers 0.03 Tireito [20] 

ϵ₁ Parameter related to moderate drinkers’ effect on alcohol 

transmission 

0.5 Assumed 

ϵ2 Parameter related to alcoholics’ effect on alcohol 

transmission 

0.5 Assumed 

ϵ₃ Parameter related to treatment effect on alcohol 

transmission 

0.7 Orwa [21] 

D A parameter related to the number of contacts between 

alcoholic and non-alcoholic 

4.13 Mayengo [13] 

C A parameter related to the probability rate of 

consumption of alcohol 

0.81 Cowling [22] 

λ 
λ =

𝐷𝐶(ϵ1𝑀 + ϵ2𝐴 + ϵ3𝑇)

𝑁
 

0.006 Assumed 
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3. MODEL ANALYSIS 

3.1. Positivity of the Solution 

Since the model system (equation (1)) relates to living organisms, all variables must 

be non-negative for any given time t >  0. Consequently, with the given initial conditions, 

the solutions of the model (1) remain positive for all t >  0. 

 

Theorem 3.1.  

Given the initial conditions, S(0) ≥ 0,M(0) ≥ 0, A(0) ≥ 0,T(0) ≥ 0 and R(0) ≥ 0, the 

solutions S(t), M(t), A(t), T(t), and R(t) of system (1) remain positive for all t >  0. 

 

Proof. By solving the first equation of system (1) for S(t) at time  t >  0, the following 

result is obtained: 

𝑑𝑆

𝑑𝑡
= π + λ2M+ ρR − μS − λS  

∫
𝑑𝑆

𝑆
≥ −(μ + λ)dt 

ln 𝑆 (𝑡) ≥ −(μ + λ)t + c 

S(𝑡) ≥ 𝑒−(μ+λ)𝑡+𝑐 

Taking (𝑒𝑐) to be (A)S(𝑡) = A𝑒−(μ+λ)𝑡 

Thus, 

S(𝑡) ≥ 𝑆(0)𝑒−𝑡(μ+λ) 

 

Therefore, S(t) is non-negative, guaranteeing that S(t) remains positive over time. A 

similar approach can be used to establish the positivity of the other variables by utilizing 

their respective equations in the system. This shows that the solutions of system (2.1), 

starting with non-negative initial conditions, will remain non-negative for all t ≥ 0, ensuring 

that S(t) > 0, M(t) > 0, A(t) > 0, T(t) > 0, and 𝑅(𝑡) > 0    

 

3.2.  Invariant Region 

A mathematical problem is considered well-posed if it has a unique solution, and its 

solution continuously depends on the initial data and parameters. 

 

Theorem 3.2.  

There exists a domain Y in which the solution set S(t), M(t), A(t), T(t), and R(t) of the 

model equation (1) is positively invariant. 

 

Proof. The following equation can express the total human population: 

N(t) = S(t) + M(t) + A(t) + T(t) + R(t)   (2) 

Equation (2) defines the population as the sum of all the model variables. Next, the rate of 

change of N(t) along the trajectories of the model (1) yields equation (3): 



 https://doi.org/10.58421/misro.v4i1.316  

 

 

79 

𝑑𝑁

𝑑𝑡
= π − μ𝑁 − μ1𝐴 − μ2𝑇 − μ3𝑅  (3) 

 

Without the presence of alcoholism in the population, the equation reduces to: 

𝑑𝑁

𝑑𝑡
= π − μ𝑁 

and, 

𝑑𝑁

𝑑𝑡
+ μ𝑁 <  

Using the integrating factor 𝑒𝜇𝑡 To solve: 

𝑁(𝑡) <
π

μ
+ 𝐶𝑒−μ𝑡 

At t = 0 

𝑁(0) −
π

μ
< 𝐶 

Substituting: 

𝑁(𝑡) ≥
π

μ
+ (𝑁(0) −

π

μ
) 𝑒−μ𝑡 

 

Where N(0) =  S(0) + M(0) +  A(0) +  T(0) +  R(0)  is the initial population. As t→ ∞, 

if: 

𝑁(0) ≥
π

μ
 

then, 

𝑁(𝑡) ≥
π

μ
 as 𝑡 →  ∞ 

Therefore, 

𝑌 = {(𝑆(𝑡),𝑀(𝑡), 𝐴(𝑡), 𝑇(𝑡), 𝑅(𝑡)) ∈ 𝑅+
𝟝 : 𝑁(𝑡) ≥

π

μ
}, This defines a valid solution region 

for the model equation (1), indicating that the total human population remains constant 

over time. As a result, the model is biologically meaningful and mathematically well-

defined within the boundaries of region Y. 

 

3.3. Basic Reproduction Number 

The basic reproduction equation and its corresponding number quantify the 

potential for the transmission of alcoholism addiction. It evaluates the average number of 

new alcoholism cases that result from the introduction of a single alcoholic individual into 

a population susceptible to addiction. The basic reproduction number is calculated using 

the next-generation matrix (NGM), where the Jacobian matrix derived from the model 

equations is used to determine the reproduction rate. 
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Theorem 3.3.  

The reproductive equation R0,  for the epidemiological model of alcoholism, is expressed 

as; 

ℛ0 =
𝑚β0(𝑘2𝑘3ϵ1 + 𝑘3𝑟1ϵ2 + α1(−α2ϵ1 + 𝑟1ϵ3))

𝑘3𝑟1𝑟2 + 𝑘1(−𝑘2𝑘3 + α1α2)
 

 

According to Sepulveda et al. [23], as follows  

 

were, 

𝑘1 = μ + λ2 + 𝑟1, 𝑘2 = α1 + 𝑟2 + μ1 + μ, 𝑘3 = α2 + ϕ + μ2 + μ,𝑚 =
π

μ
, β0 = 𝐷𝐶 

 

Proof. According to Sepulveda et al. [23], the Alcoholic subsystem is deduced from three 

equations: 

𝑑𝑀

𝑑𝑡
= λ𝑆 + 𝑟2𝐴 − (μ + λ2 + 𝑟1)𝑀 

𝑑𝐴

𝑑𝑡
= 𝑟1𝑀+ β𝑅 + α2𝑇 − (α1 + 𝑟2 + μ1 + μ)𝐴 

𝑑𝑇

𝑑𝑡
= α1𝐴 − (α2 + ϕ + μ2 + μ)𝑇  

And the force of alcoholism taken as λ =
𝐷𝐶(ϵ1𝑀+ϵ2𝐴+ϵ3𝑇)

𝑁
  where 

𝑘1 = μ + λ2 + 𝑟1, 𝑘2 = α1 + 𝑟2 + μ1 + μ, 𝑘3 = α2 + ϕ + μ2 + μ,𝑚 =
π

μ
, β0 = 𝐷𝐶 

 

The Jacobian matrix J from the system becomes: 

𝐽 = [
−k₁ +  mβ₀ε₁ mβ₀ε₂ +  r₂ mβ₀ε₃

r₁ −k₂  α₂
0 α₁ −k₃ 

]  

 

The Jacobian matrix of the system is decomposed into two matrices, F and V. 

𝐹 = [
−k₁ +  mβ₀ε₁ mβ₀ε₂ +  r₂ mβ₀ε₃

0 0  0
0 0 0 

]  

 

and  

𝑉 = [
0 0 0
r₁ −k₂  α₂
0 α₁ −k₃ 

]  

 

Therefore, the basic reproduction number for the system model (1) is determined 

by calculating the spectral radius of the matrix FV-1. Hence, the reproduction number is 

expressed as: ℛ0 > 1: Indicates that alcoholism is spreading in the population. Parameters 

D, C, r1, α1, and α2 can significantly influence whether the reproduction number R0 is 

positive. A combination of increased contact rates (D), transmission probabilities (C), 
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recruitment from moderate to alcoholic (r1), and relapse rates (α2) will push R0 above 1, 

indicating that alcoholism will spread within the population. Each alcoholic influences 

more than one other person to either relapse into or start drinking. In this case, 

interventions (like treatment, education, and prevention) cannot control the problem. 

When ℛ0  <  1: Suggests that the interventions (such as treatment programs, social 

policies, and awareness campaigns) are effective and that alcoholism is declining within 

the population. Each alcoholic influences fewer than one person to relapse or start 

drinking. In the context of Kenya’s alcoholism crisis, this reproduction number helps 

quantify how quickly alcohol consumption behaviour spreads and whether the current 

measures (treatment, rehabilitation, awareness, etc.) are sufficient to control it. 

Understanding and minimizing R0 can be key to reducing the prevalence of alcoholism in 

the country. 

 

3.4. Stability Analysis 

The local stability of the equilibrium points in the modelled system was analyzed to 

understand how the system responds to small disturbances. An equilibrium point is 

considered stable if, after a perturbation, all solutions converge to that point. Conversely, if 

the solutions do not converge, the equilibrium point is deemed unstable. To assess this, we 

will apply the Gershgorin Circle Theorem, which is presented in the following theorem: 

 

Theorem 3.4.1. (Gershgorin Circle Theorem) 

Let A be a 𝑛 × 𝑛 matrix with real entries. If the diagonal elements aii of A satisfy aii < ri, 

where ri represents the sum of the absolute values of the non-diagonal elements in the ith 

row, Where, 

𝑟𝑖 =∑|𝑎𝑖𝑗|

𝑛

𝑗=1
𝑗≠𝑖

 

For i=1, 2,…,n, where ri is the sum of the absolute values of the non-diagonal elements in 

the ith row, then the eigenvalues of A are either negative or have negative real parts. The 

following corollaries are applied to analyze the stability of equilibrium points in the 

selected models:  

Corollary 1: The disease-free equilibrium is locally asymptotically stable if ℛ0 <  1. This 

means alcoholism increases with time reduces.  

Corollary 2: The endemic equilibrium is locally asymptotically stable ℛ0 > 1  implies that 

alcoholism increases with time, demanding intervention measures like treatment to reduce 

the increase of alcohol addiction. 
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3.4.1. Alcohol-Free Equilibrium Point 

The Jacobian matrix J for the system of differential equations given by equation (1) 

where alcoholism is present, and force of infection in moderate, alcoholic, and treatment 

compartment is presented as follows: 

 

Using,  

𝑘1 = −μ; 𝑘2 = −(μ + λ2 + 𝑟1); 𝑘3 = −(α1 + 𝑟2 + μ1 + μ); 

𝑘4 = −(𝛼2 + 𝜙 + 𝜇2 + 𝜇); 𝑘5 = −(𝜌 + 𝛽 + 𝜇3 + 𝜇); 𝛽0 = 𝐷 ⋅ 𝐶;𝑚 =
𝜋

𝜇
 

The Gershgorin Circle Theorem (GCT) asserts that every eigenvalue of a matrix lies within 

at least one of the Gershgorin discs, which are defined for each row of the matrix. For each 

row i of the matrix J, the corresponding Gershgorin disc Di is centred at the diagonal 

element ai, with a radius Ri equal to the sum of the absolute values of the non-diagonal 

elements in that row.𝐷𝑖 = {𝑧 ∈ 𝐶: |𝑧 − 𝑎𝑖𝑖| ≤ 𝑅𝑖} 

Where;     

𝑟𝑖 =∑|𝑎𝑖𝑗|

𝑛

𝑗=1
𝑗≠𝑖

 

 

Calculating the Gershgorin Discs For the matrix J; 

𝑎11 = 𝑘1 = −μ,  𝑅1 = |λ2| + |ϵ1𝑚β0| + |ϵ2𝑚β0| + |ϵ3𝑚β0| + |ρ| 

𝑎22 = 𝑘2 + ϵ1𝑚β0,  𝑅2 = |𝑟2 + ϵ2𝑚β0| + |ϵ3𝑚β0| 

𝑎33 = 𝑘3,  𝑅3 = |𝑟1| + |α2| + |β| 

𝑎44 = 𝑘4,  𝑅4 = |α1| 

𝑎55 = 𝑘5,  𝑅5 = |ϕ| 

 

Condition for Stability:  

If all Gershgorin discs are entirely located in the left half of the complex plane (i.e., they 

do not touch or cross the imaginary axis into the right half), then all eigenvalues have 

negative real parts, indicating that the equilibrium is locally asymptotically stable. 

 

Condition for Instability:  

If any Gershgorin disc intersects or extends into the right half of the complex plane, the 

matrix has at least one eigenvalue with a positive real part, signifying instability. 
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If all ki values (with i ∈ {1,3,4,5}) are sufficiently negative and the radii Ri are small, the 

Gershgorin discs will be entirely contained within the left half of the complex plane, 

indicating local stability. 

The critical case arises with the second disc, where the term k2+ϵ1mβ0 could potentially 

shift the disc into the right half-plane if ϵ1mβ0 becomes large enough. If this disc crosses 

the imaginary axis, the system may become unstable. 

Since one of the Gershgorin discs might intersect or extend into the right half of the 

complex plane, the matrix will have at least one eigenvalue with a positive real part, 

signalling instability. As a result, the alcohol-free equilibrium (AFE) is locally 

asymptotically unstable. 

3.4.2. Global Stability Analysis of the AFE 

We use the quadratic Lyapunov function method to examine the global asymptotic 

stability of the system. 

 

Theorem 3.4.2 

Consider the autonomous dynamical system described by x* = f(x), where x ∈ Rn is the 

state vector, and f: Rn → Rn is a continuously differentiable function. Let x* be an 

equilibrium point of the system, meaning that f(x*) = 0. Assume there exists a quadratic 

Lyapunov function V(x): Rn → Rn of the form: 

 

𝑉(x) = (x − x∗)𝑇𝑃(x − x∗) 

Where P is a symmetric positive definite matrix, i.e., P = PT > 0, and the following 

conditions are met: 

1. Positive Definiteness: V(x) is positive definite, meaning V(x) > 0 for all x ≠ x*, 

and V(x*) = 0. 

2. Negative Definiteness of the Derivative: The time derivative of V(x) along the 

system's trajectories, given by 𝑉(𝑥) = 𝑑𝑉(𝑥)/𝑑𝑡=∇V(x).f(x), is negative definite, 

i.e., V˙(x) < 0 for all x ≠ x*. 

Conclusion: 

The equilibrium point x* is globally asymptotically stable if these conditions are satisfied. 

This implies that for any initial condition x(0) ∈ Rn, the solution x(t) will converge to x* as 

t → ∞. 

To perform the global stability analysis, we construct the Jacobian matrix for the model 

system (1) and evaluate it at the Alcohol-Free Equilibrium (AFE), as shown below, with 

the symbols retaining the same meaning as defined in Section 3.4.2: 

 



               https://doi.org/10.58421/misro.v4i1.316 

 

84 

 (4) 

We select a quadratic Lyapunov function in the form: 

V(x) = xTPx 

where x is the state vector, x = (x1, x2, x3, x4, x5), x
T, and P is a symmetric positive definite 

matrix. 

Assuming P = I, where I is the identity matrix, the Lyapunov function simplifies to: 

V(x) = x2
1+ x2

2+ x2
3+ x2

4+ x2
5 

The time derivative of V(x) along the system's trajectories becomes: 

𝑉̇(𝑥) =
𝑑

𝑑𝑡
(𝑥𝑇𝑃𝑥) = 𝑥̇𝑇𝑃𝑥 + 𝑥𝑇𝑃𝑥̇ 

 

Since P = I, this simplifies to: 

𝑉̇(𝑥) = 𝑥̇𝑇𝑥 + 𝑥𝑇𝑥̇ = 2𝑥𝑇𝑥̇ 

Substituting𝑥̇ = 𝐴𝑥, we get: 

𝑉̇(𝑥) = 2𝑥𝑇𝐴𝑥 

Substituting the matrix A into the expression:

 
This simplifies to  

𝑉̇(𝑥) = 2(𝑘1𝑥1
2 + λ2𝑥1𝑥2 − ϵ1𝑚β0𝑥1𝑥3 − ϵ2𝑚β0𝑥1𝑥4 − ϵ3𝑚β0𝑥1𝑥5 + ρ𝑥1𝑥5
+ (𝑘2 + ϵ1𝑚β0)𝑥2

2 + 𝑟2𝑥2𝑥3 + ϵ3𝑚β0𝑥2𝑥4 + 𝑘3𝑥3
2 + α2𝑥3𝑥4 + β𝑥3𝑥5

+ 𝑘4𝑥4
2 + ϕ𝑥4𝑥5 + 𝑘5𝑥5

2) 

For the system to be globally stable𝑉̇(𝑥)The time derivative𝑉̇(𝑥)  must be negative 

definite, meaning 𝑉̇(𝑥) < 0 for all x ≠ 0. 



 https://doi.org/10.58421/misro.v4i1.316  

 

 

85 

Diagonal terms (stability along individual axes): If (𝑘1), (𝑘2 + ϵ1𝑚β0), (𝑘3), (𝑘4) and 𝑘5 

are all negative, the diagonal terms contribute negatively to 𝑉̇(𝑥), which is required for 

stability. 

Off-diagonal terms (cross-coupling effects): Terms like 

(λ2𝑥1𝑥2), (ρ𝑥1𝑥5), and (𝑟2𝑥2𝑥3) it can be positive or negative, depending on the values of 

λ2, ρ, and r2. However, if the diagonal dominance is strong enough (i.e., the magnitudes of 

(𝑘1), (𝑘2 + 𝜖1𝑚𝛽0), (𝑘3), (𝑘4) and 𝑘5 are significantly larger than the magnitudes of the 

off-diagonal terms), the diagonal terms will dominate, making 𝑉̇(𝑥) negative. The system 

is globally asymptotically stable provided that the following conditions hold: The diagonal 

elements (𝑘1), (𝑘2 + 𝜖1𝑚𝛽0), (𝑘3), (𝑘4), (k5) are all negative (ensuring that the 

contributions from the diagonal terms are negative). The off-diagonal terms are either 

negligible in comparison to the diagonal terms, or they combine in such a way that the 

overall contribution to 𝑉̇(𝑥) remains negative. If these conditions hold, 𝑉̇(𝑥) decreases 

over time, ensuring that x(t) converges to the equilibrium point is reached as t approaches 

infinity, confirming global asymptotic stability. Otherwise, it is unstable. 

 

4. NUMERICAL SIMULATIONS 

A numerical simulation of the system model (1) was conducted on the impact of 

recruitment rate to Treatment, the Combination of Intervention Strategies, the impact of 

recruitment rate from moderate drinkers to alcoholics, and the impact of relapse rate to 

Alcoholics using parameter values derived from reported studies, current alcohol 

consumption trends in Kenya, and some estimated values to provide meaningful analysis 

for this study. The parameter values listed in Table 1 were used for the numerical 

simulations. The simulations were carried out throughout 0 ≤ t ≤ 100 days, during which 

addiction is expected to have fully developed. A baseline population of 1,000 individuals 

was used to represent the effective population. The simulations were performed using 

PYTHON software, with JUPYTER as the integrated development environment (IDE), and 

the results are presented in graphical form. 

 

4.1. Numerical simulation on the impact of recruitment rate on treatment. 

Analyzing Figure 2, it is evident that increasing the rate at which alcoholics 

transition to treatment results in a higher and earlier peak in the treatment population, 

highlighting its importance in managing alcohol abuse and addiction. The higher the 

treatment rate, the lower the alcohol addiction. The lower the treatment rate, the higher the 

alcohol addiction. Several strategies can be implemented to enhance this transition rate. 

For instance, increasing accessibility to treatment programs through expanded facilities 

and reduced costs can encourage more individuals to seek help and reduce alcohol 

addiction.  
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Figure 1. Effect of increase of transition rate of Alcoholics to Treatment. 

4.2. Numerical Simulations on the Combination of Intervention Strategies. 

Without treatment, alcoholism addiction generally leads to a progressive decline in 

physical and mental health, as well as increasing social and behavioural problems. Without 

the intervention of necessary strategies to lower the abuse of alcohol, the impact could be 

worse. Figure 3 illustrates this worsening trend over time, emphasizing the critical need for 

intervention measures of treatment to manage the addiction and prevent severe 

consequences. 

 

 

Figure 2. Impact of no Intervention Strategies. 

The graph in Figure 4 presented below depicts the influence of intervention on the 

prevalence of addiction in a clear manner, showcasing how the implementation of a 

treatment strategy involving rehabilitation leads to a reduction from 350 alcohol abuse to 

almost 250 and increases recovered individuals to almost 150 by day 30  compared with a 

scenario without any form of intervention(treatment). Here, rehabilitation serves to 

decrease the population of individuals struggling with addiction. It does not affect those 

categorized as moderate drinkers. It is essential to emphasize the significance of 

implementing intervention measures aimed at reducing the pool of people with an 
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addiction in order to reduce the probability of contact with moderate drinkers to reduce the 

reproduction number of alcoholics. Therefore, efforts should be concentrated on strategies 

that aim to limit the initiation of alcohol consumption among individuals by reducing the 

number of people with an addiction to a negligible level. 

 

 
Figure 3. Impact of Intervention Strategies 

 

4.3. Numerical Simulations on the impact of recruitment rate from moderate 

drinkers to alcoholics. 

To minimize the impact of alcohol abuse in a community, efforts should focus on 

reducing the number of moderate drinkers, as indicated by Figure 5. Since the higher the 

recruitment of moderate drinkers to alcohol, the higher the rate of alcohol addiction, the 

lower the rate of recruitment, the lower the rate of addiction. Encouraging abstinence or 

minimal drinking can help lower the overall rate of alcoholic cases and prevent the 

escalation of alcohol-related issues and disorders. 

 

 

Figure 4. Impact of the rate of recruitment moderate to Alcoholics 
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4.4 Numerical simulation on the impact of relapse rate on Alcoholics 

The relapse rates primarily drive the differences in the peak values of the treatment 

population. Lower relapse rates result in higher peaks because more individuals stay in the 

treatment compartment for longer periods, while higher relapse rates lead to lower peaks 

due to quicker transitions back to the alcoholic state, as shown in Figure 6.  

 

 
Figure 5. Impact of relapse rates. 

 

5. DISCUSSION 

The study developed the Susceptible-Moderate Alcoholic-Treatment-Recovered 

(SMATR) model, using Ordinary Differential Equations (ODEs) to analyze the 

transmission dynamics of alcohol addiction and assess interventions aimed at reducing 

addiction rates. This model's Alcohol-Free Equilibrium (AFE) and Alcoholic Equilibrium 

(AE) were evaluated for stability using the Jacobian matrix method, based on frameworks 

by Van Driessche and Watmough [24], with additional insights from Ochwach & Okongo 

[25]. The basic reproduction number (R₀), calculated via the next-generation matrix 

(NGM) method, was identified as a critical metric for understanding addiction persistence, 

where R₀ > 1 suggests addiction sustainability in the population [24]. Sensitivity analysis 

pinpointed key parameters influencing R₀, showing that policy enforcement (λ₂), treatment 

accessibility (α₁), and socioeconomic improvements (r₂) effectively curb addiction, while 

relapse rates (β) and social influences (r₁) increase it. These findings underscore the need 

for multifaceted interventions, including awareness campaigns, economic support, and 

strengthened support systems [25]. Additionally, the global stability analysis, achieved 

through the Quadratic Lyapunov function, confirmed the AFE’s global asymptotic 

stability, indicating that targeted policies could potentially eliminate alcoholism on a large 

scale. Simulations revealed the importance of sustaining low R₀ and increasing treatment 

enrollment, highlighting that reducing stigma, providing incentives for rehabilitation, and 

implementing continuous support networks could be transformative. Improving treatment 

infrastructure, personalizing care plans, and integrating telemedicine further support long-

term recovery, reducing relapse and promoting healthier communities. This model 

provides a comprehensive framework for policymakers and healthcare providers to address 

addiction sustainably. 
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6. CONCLUSION  

This paper formulates a deterministic model to investigate the spread of alcohol 

addiction, considering the intervention measure of treatment. The model undergoes 

qualitative analysis and numerical simulations. The findings indicate that while treatment 

can lower the transmission rate of alcoholism, detailed plans are essential for rehabilitating 

alcoholics. Treatment also reduces peak days, providing early warnings for public health 

officials to expand rehabilitation facilities and minimize contact between alcoholics and 

non-alcoholics. Additionally, the study highlights the significant role relapse plays in the 

progression of alcoholism, emphasizing the need to reduce relapse rates through aftercare 

programs. It further notes that the rate of alcohol addiction is greatly influenced by the 

consistency with which alcoholics seek help and the accessibility of treatment facilities. 

Increasing treatment rates requires effective publicity and incentives, with government 

support to improve infrastructure and ease the burden on those seeking rehabilitation. 

Overall, the study concludes that treatment is an essential remedy for alcohol addiction, as 

it leads to faster outcomes and the reproduction number of alcoholism can be controlled or 

predicted for better planning. 
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